lý thuyết căn bậc 2 lớp 9
1.3. Ứng dụng của bất phương trình bậc hai một ẩn. Bất phương trình bậc hai một ẩn có nhiều ứng dụng, chẳng hạn: giải một số hệ bất phương trình; ứng dụng vào tính toán lợi nhuận trong kinh doanh; tính toán điểm rơi trong pháo binh; …. Câu 1: Giải các bất phương
Căn bậc 2, công thức tính căn bậc 2 và bài tập Căn bậc nhị là bài học thứ nhất trong chương trình toán đại số 9. Đây là loài kiến thức nền tảng của của phần đại số lớp 9. Căn bậc 2 đó là phép toán ngược của phép bình phương. Bạn đang xem: Căn bậc 2, công thức tính căn bậc 2 và bài tập
A. Lý thuyết về bảng căn bậc 2. 1. Giới thiệu về bảng căn bậc 2. + Bảng căn bậc 2 có cấu tạo bao gồm các hàng và các cột. + Cấu tạo của căn bậc 2 của các số được tạo bởi không nhiều hơn ba chữ số. Số đầu tiên bắt đầu từ 1,00 đến 99,9 được ghi sẵn trong bảng căn bậc 2 kết hợp với các cột có số bắt đầu từ 0 đến 9.
1. Tư tưởng số vô tỉ Số vô tỉ có thể viết dưới dạng số thập phân vô hạn không tuần hoàn. Kí hiệu của số vô tỉ là I 2. định nghĩa căn bậc hai - Căn bậc hai của số a ko âm là số x sao chox2=a - Số dương a gồm đúng nhì căn bậc nhì là nhì số đối nhau là avà -a.
Tóm tắt kiến thức lý thuyết Toán lớp 9 thuộc chương trình Sách giáo khoa Toán 9 tập 1, tập 2. Hai phần Đại số 9 và hình học 9. PHẦN HÌNH HỌC - TOÁN 9 TẬP 1: Chương I. Căn bậc hai. Căn bậc ba: Chương I. Hệ thức lượng trong tam giác vuông
A. Số vô tỉ là gì? - Số vô tỉ là số viết được bên dưới dạng số thập phân vô hạn không tuần hoàn. Bạn đang xem: Lý thuyết căn bậc 2 lớp 7. - Tập hợp những số vô tỉ kí hiệu là I. Ví dụ: 3.145248… là số vô tỉ.
Vay Tiền Online Từ 18 Tuổi. Bảng căn bậc 2 thuộc chương trình toán lớp 9 giúp các em học sinh có thể tính căn bậc 2 của một số bất kỳ mà không cần sử dụng đến máy tính. Hãy cùng HOCMAI tìm hiểu cách sử dụng. 1. Giới thiệu về bảng căn bậc 2 + Bảng căn bậc 2 có cấu tạo bao gồm các hàng và các cột + Cấu tạo của căn bậc 2 của các số được tạo bởi không nhiều hơn ba chữ số. Số đầu tiên bắt đầu từ 1,00 đến 99,9 được ghi sẵn trong bảng căn bậc 2 kết hợp với các cột có số bắt đầu từ 0 đến 9. + Bảng căn bậc 2 còn bao gồm cột hiệu chính được sử dụng để hiệu chính chữ số cuối của căn bậc hai của các số được viết bởi bốn số bắt đầu từ 1,000 đến 99,99 . + Bảng căn bậc 2 chi tiết như sau Cách sử dụng bảng căn bậc 2 1. Cách tìm căn bậc 2 của số bất kỳ lớn hơn 1 và nhỏ hơn 100 Để tìm kết quả có 1 số bất kỳ, ta tìm phần nguyên của số đó và sau dấu “,” 1 chữ số trên cột dọc nếu trên cột dọc có. Sau đó các phần sau sẽ đối chiếu với hàng ngang của cột, giao điểm của cột dọc và cột ngang chính là kết quả của căn bậc 2 của số đó. Ví dụ Tính kết quả √5,76 Giải ta đối chiếu với bảng căn bậc 2 Ta sẽ có kết quả √5,76 = 2,400 Tính √36,72 Giải Ta đối chiếu với bảng căn bậc 2 Vậy ta có kết quả √36,72 = 6,0582 Tương tự các em học sinh tra bảng để tìm √9,15 và √40,85 2. Cách tìm căn bậc 2 của số lớn hơn 100 Để tìm được căn bậc 2 của số lớn hơn 100, ta biến đổi số đó thành phép nhân của các số <100 với nhau, sau đó dùng bảng căn bậc 2 tính căn bậc 2 của từng số đã biến đổi và nhân với nhau để ra kết quả. Ví dụ Tính √2006 Giải √2006 = √20,06×100 = √20,06 x √100 = 10 x √20,06 Tra bảng căn bậc 2 ta có √20,06 = 4,539 Vậy √2006 = 10 x 4,539 = 45,39 c Cách tính căn bậc hai của số nhỏ hơn 1 và không âm Tương tự như cách tìm căn bậc 2 của số lớn hơn 100 tính căn bậc 2 của số nhỏ hơn 1 không âm thì ta lại áp dụng biến đổi dựa trên phép chia. Sử dụng bảng căn bậc 2 để tính từng căn bậc 2 của các số rồi chia cho nhau để ra kết quả. Ví dụ B. Một số bài tập luyện tập sử dụng bảng căn bậc 2 Tham khảo thêm Liên hệ giữa phép thương và phép khai phương
I. Lý thuyết về căn bậc 2 1. Khái niệm Căn bậc hai của một số a điều kiện a không âm là số x thì thỏa mãi điều kiện x² = a 2. Các tính chất của căn bậc 2 – Không có căn bậc 2 của số âm – Số 0 chỉ có một căn bậc hai duy nhất đó chính là số 0, ta viết √0 = 0 – Một số dương a bất kỳ có 2 và chỉ 2 căn bậc hai là hai số đối nhau trái dấu nhau; số dương ký hiệu là √a, số âm ký hiệu là -√a. Vậy căn bậc 2 của a = √a và -√a 3. Ví dụ cụ thể – Căn bậc 2 của 64 là 8 và -8. – Căn bậc 2 cuả 10 là √10 và -√10 – Không có căn bậc 2 của -20 do -20 x >= 0 và x² = a – Một số ví dụ minh họa Căn bậc hai số học của 9 là √9 = 3. Căn bậc hai số học của 7 là √7 ≈ 2,645751311… Ví dụ 1 Tìm căn bậc hai số học của các số sau đây 100, 121, 625, 10000 Giải Căn bậc hai số học của 100 là √100 = 10. Căn bậc hai số học của 121 là √121 = 11 Căn bậc hai số học của 625 là √625 = 25 Căn bậc hai số học của 10000 là √10000 =100 2. Phép khai phương – Phép khai phương là phép toán học tìm căn bậc hai số học của số không âm – lớn hơn 0 Phép khai phương gọi tắt là khai phương. – Khi biết một căn bậc hai số học của một số, chúng ta sẽ dễ dàng xác định được các căn bậc hai của số này. – Ví dụ minh họa Căn bậc hai số học của 64 là 8 vậy 64 sẽ có hai căn bậc hai là 8 và -8. Căn bậc hai số học cuả 10000 là 100 vậy 10000 sẽ có hai căn bậc hai là 100 và -100 Căn bậc hai số học của 121 là 11 vậy 121 sẽ có hai căn bậc hai là 11 và -11 3. Một số kết quả cần nhớ – Với trường hợp a ≥ 0 thì a = √a2. – Với trường hợp a ≥ 0, nếu x ≥ 0 và x2 = a thì x = √a. – Với trường hợp a ≥ 0 và x2 = a thì x = ±√a. III. SO SÁNH CÁC CĂN BẬC HAI SỐ HỌC. Định lý so sánh các căn bậc 2 số học Cho hai số a và b đều không âm, ta có biểu thức như sau a > b ⇔ √a > √b Một số ví dụ minh họa 1. So sánh 1 với √2 Hướng dẫn giải Ta có 1 7 ⇒ √16 > √7 Vậy 4 > √7. 3. Hãy so sánh các số sau a 4 và √17 b 8 và √52 Hướng dẫn giải a Ta có 4 = √16 mà 17 > 16 nên √17 > √16. Vậy √17 > 4 b Ta có 8 = √64 mà 64 > 52 nên √64 > √52 tức 8 b ⇔ √a > √b Dạng 2 Tính giá trị của biểu thức chứa căn bậc hai Phương pháp giải Sử dụng hằng đẳng thức √A² = A = A Khi A >= 0 và – A Khi A = 0 và -A khi A = 0 Dạng 5 Giải phương trình chưa căn bậc 2 Phương pháp giải Các em học sinh cần lưu ý một số phép biến đổi tương đương có liên quan đến căn bậc 2 như sau Tham khảo ngay Tài liệu ôn tập Toán lớp 9 C Bài tập thực hành căn bậc 2 lớp 9 Bài 1 Tìm x để các căn thức bậc hai sau có nghĩa Bài 2 Rút gọn các biểu thức sau Bài 3 Giải các phương trình sau Bài 4 Chứng minh rằng √2 + √6 + √12 + √20 + √30 + √42 < 24 Bài 5 Tìm giá trị lớn nhất của biểu thức Bài 6 Rút gọn biểu thức A Bài 7 Cho biểu thức M có dạng a Rút gọn biểu thức M; b Tìm các giá trị của x để M = 4. Bài 8 Tìm giá trị nhỏ nhất của mỗi biểu thức Bài 9 Tìm x, để Trên đây là toàn bộ kiến thức mà các em học sinh cần nắm được về Căn bậc 2 trong chương trình Toán lớp 9. Hy vọng bài viết trên sẽ giúp các em có thêm kiến thức để giải các dạng bài tập liên quan tới căn bậc 2 lớp 9.
xin giới thiệu đến quý thầy cô và học sinh Bài 1 Căn bậc hai SGK Toán 9 tập 1 dưới sự trình bày chi tiết, rõ ràng theo khung chương trình sách giáo khoa Toán 9 giúp cho các bạn học sinh ôn tập và củng cố lý thuyết môn Toán lớp 9 vững vàng. Mời các bạn tham khảo!Căn bậc hai lớp 9I. Căn bậc hai số học1. Nhắc lại lý thuyết căn bậc hai Toán 7- Căn bậc hai của một số a không âm là số x sao cho .- Số dương a có đúng hai căn bậc hai là hai số đối nhau Số dương kí hiệu là và số âm được kí hiệu là .Bạn đang xem Lý thuyết căn bậc 2 lớp 9Ví dụ Tìm các căn bậc hai của các sốa 9 b c - 4Hướng dẫn giảia Số 9 có hai căn bậc hai là 3 và – 9 vì b Số có hai căn bậc hai là và vì c Số - 4 không có căn bậc hai vì - 4 Ví dụ Tìm căn bậc hai số học của các sốa 81 b 9Hướng dẫn giảia vì và b vì và Chú ý- Phép toán tìm căn bậc hai số học của một số không âm được gọi là phép khai phương gọi tắt là khai phương- Khi biết căn bậc hai số học của một số, ta có thể dễ dàng xác định được các căn bậc hai của nóTính chất Với , ta có- Nếu thì và - Nếu và thì Tổng quátII. So sánh các căn bậc hai số học
A. Căn bậc 2 Toán lớp 9 I. Lý thuyết về căn bậc 2 1. Khái niệm Căn bậc hai của một số a điều kiện a không âm là số x thì thỏa mãi điều kiện x² = a 2. Các tính chất của căn bậc 2 – Không có căn bậc 2 của số âm – Số Zero chỉ có một căn bậc hai duy nhất đó chính là số 0, ta viết √0 = 0 – Một số dương a bất kỳ có 2 và chỉ 2 căn bậc hai là hai số đối nhau trái dấu nhau; số dương ký hiệu là √a, số âm ký hiệu là -√a. Vậy căn bậc 2 của a = √a và -√a 3. Ví dụ cụ thể – Căn bậc 2 của 64 là Eight và -8. – Căn bậc 2 cuả 10 là √10 và -√10 – Không có căn bậc 2 của -20 do -20 x >= Zero và x² = a – Một số ví dụ minh họa Căn bậc hai số học của 9 là √9 = 3. Căn bậc hai số học của 7 là √7 ≈ 2,645751311… Ví dụ 1 Tìm căn bậc hai số học của các số sau đây 100, 121, 625, 10000 Giải Căn bậc hai số học của 100 là √100 = 10. Căn bậc hai số học của 121 là √121 = 11 Căn bậc hai số học của 625 là √625 = 25 Căn bậc hai số học của 10000 là √10000 =100 2. Phép khai phương – Phép khai phương là phép toán học tìm căn bậc hai số học của số không âm – lớn hơn 0 Phép khai phương gọi tắt là khai phương. – Khi biết một căn bậc hai số học của một số, chúng ta sẽ dễ dàng xác định được các căn bậc hai của số này. – Ví dụ minh họa Căn bậc hai số học của 64 là Eight vậy 64 sẽ có hai căn bậc hai là Eight và -8. Căn bậc hai số học cuả 10000 là 100 vậy 10000 sẽ có hai căn bậc hai là 100 và -100 Căn bậc hai số học của 121 là 11 vậy 121 sẽ có hai căn bậc hai là 11 và -11 3. Một số kết quả cần nhớ – Với trường hợp a ≥ Zero thì a = √a2. – Với trường hợp a ≥ 0, nếu x ≥ Zero và x2 = a thì x = √a. – Với trường hợp a ≥ Zero và x2 = a thì x = ±√a. III. SO SÁNH CÁC CĂN BẬC HAI SỐ HỌC. Định lý so sánh các căn bậc 2 số học Cho hai số a và b đều không âm, ta có biểu thức như sau a > b ⇔ √a > √b Một số ví dụ minh họa 1. So sánh 1 với √2 Hướng dẫn giải Ta có 1 7 ⇒ √16 > √7 Vậy 4 > √7. 3. Hãy so sánh các số sau a Four và √17 b Eight và √52 Hướng dẫn giải a Ta có 4 = √16 mà 17 > 16 nên √17 > √16. Vậy √17 > 4 b Ta có 8 = √64 mà 64 > 52 nên √64 > √52 tức 8 b ⇔ √a > √b Dạng 2 Tính giá trị của biểu thức chứa căn bậc hai Phương pháp giải Sử dụng hằng đẳng thức √A² = A = A Khi A >= 0 và – A Khi A = 0 và -A khi A = 0 Dạng 5 Giải phương trình chưa căn bậc 2 Phương pháp giải Các em học sinh cần lưu ý một số phép biến đổi tương đương có liên quan đến căn bậc 2 như sau Tham khảo ngay Tài liệu ôn tập Toán lớp 9 C Bài tập thực hành căn bậc 2 lớp 9 Bài 1 Tìm x để các căn thức bậc hai sau có nghĩa Bài 2 Rút gọn các biểu thức sau Bài 3 Giải các phương trình sau Bài 4 Chứng minh rằng √2 + √6 + √12 + √20 + √30 + √42 < 24 Bài 5 Tìm giá trị lớn nhất của biểu thức Bài 6 Rút gọn biểu thức A Bài 7 Cho biểu thức M có dạng a Rút gọn biểu thức M; b Tìm các giá trị của x để M = 4. Bài 8 Tìm giá trị nhỏ nhất của mỗi biểu thức Bài 9 Tìm x, để Trên đây là toàn bộ kiến thức mà các em học sinh cần nắm được về Căn bậc 2 trong chương trình Toán lớp 9. Hy vọng bài viết trên sẽ giúp các em có thêm kiến thức để giải các dạng bài tập liên quan tới căn bậc 2 lớp 9.
lý thuyết căn bậc 2 lớp 9